

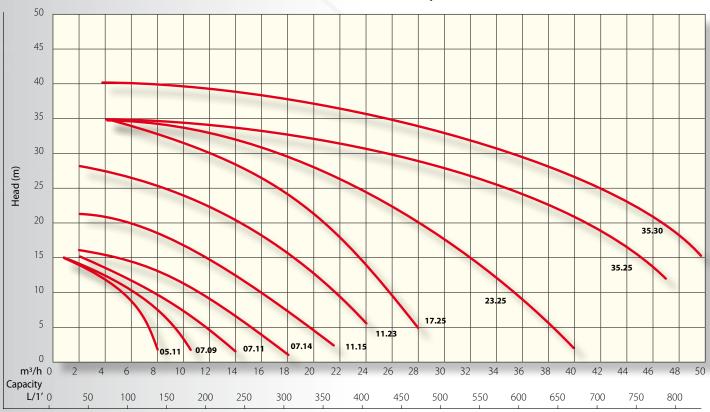
Equipro

The pumps of this range (original Argal product) are made in thermoplastic technopolymers; they are close-coupled, vertical axis, with axial hydraulic suction connection, directed downward, and tangential outlet either free or connected to vertical outlet piping. They are specifically designed for pumping corrosive liquids, with particular constructive solutions to guarantee time-life and functionality.

There are no metal parts in direct contact with the pumped liquid; where the pump is connected with the motor there is no need of sealing system against leakage of liquids; only a device of vapour sealing in static and dynamic conditions is applied.

The innovative design of the base bracket, which is composed of two parts, allows wide access to the coupling joint of the standard electric motor in order to ease maintenance operations.

For each pump model, three different electric motor powers can be installed for pumping liquids with different specific gravities (N-P-S version, respectively for specific gravities from 1.1 to 1.35 - 1.8), even at maximum flow.


They differ in two series denominated KME and HME.

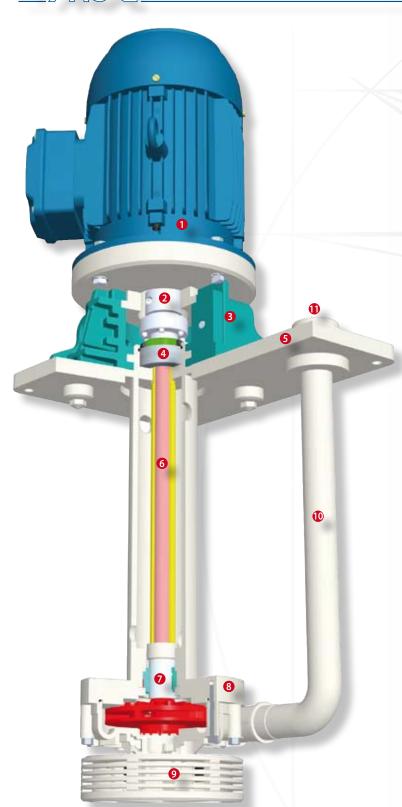
KME, with varying lengths from 600 to 1500mm of the immersed parts; they are pumps with the shaft guided by a sliding bearing, hosted at the backside of the impeller and formed by fixed and rotating bushings in appropriate chemical-resistant, wear-resistant and anti-abrasive materials

Argal operates with ISO 9001:2000 Quality System certified by SQS-IQNet.

NOTES: All curves are referred to: water at 20°C - viscosity 1 °E - specific gravity 1 kg/dm³ pt

	LABELS IN THIS CATALOG
GFR/PP	Glass fibre reinforced Polypropylene
CFF / PVDF	Vinylidene Polyfluoride carbon fibre filled
PP	Polypropylene
PVDF	Vinylidene Polyfluoride
E-CTFE	Etylene-Chloro Trifluoro Ethylene
PTFE	Polytetrafluoroethylene
Al ₂ O ₃	Alumina ceramic at 99,7%
SiC	Silicon Carbide
FKM	Fluorine elastomer
EPDM	Ethylene-Propylene rubber

THE CONSTRUCTIONS


THE CONSTRUCTIONS		table i						
VERSION	WR	FC						
Volute casing		CFF/PVDF						
Impeller	GFR/PP	E-CTFE						
Support		GFR/PP						
Baseplate	PP							
Shaft	Steel							
Shaft coating	PP	PTFE						
Submerged column	FF	PVDF						
Gasket	FKM/EPDM							
Submerged screws	PVDF							
Screws	Stainle	ss steel						

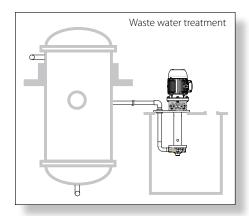
TECHNICAL DATA table 2

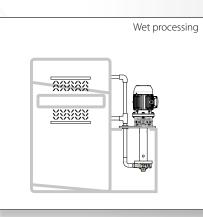
			MAX	WORK TEMPERATU	JRE °C										
	HI	ME		KME											
Under plate lenght (mm)	275	450	600	800	1000	1250	1500								
Version / Serie	Hi	ME		KME											
WR			70		65	55	50								
FC			90		85	75	65								
			ADMITTED ENVIR	ONMENTAL TEMPE	RATURE RANGE °C										
WR				0 ÷ +40											
FC				-10 ÷ +40			0 ÷ +40								

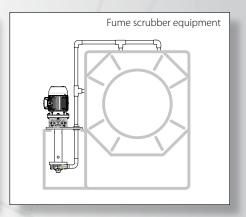
MOTOR SPECIFICATIONS	table 3

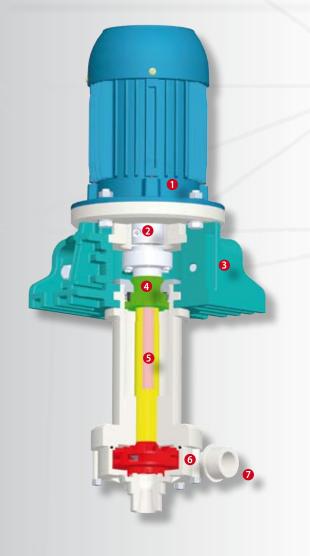
		05.11		05.11			05.11 07			07.09 07.			.11 07.14			11.15		11.23		17.25		;	23.25		35.25			5	35.30)
		Ν	Р	S	N	Р	S	Ν	Р	S	Ν	Р	S	N	Р	S	Ν	Р	S	Ν	Р	S	N	Р	S	N	Р	S	Ν	Р	S
Power	kW	0.37	0.55	0.75	0.55	0.75	1.1	0.75	1.1	1.5	1.1	1.5	2.2	1.5	2.2	3	2.2	3	4	4	5.5	/	4	5.5	/	5.5	7.5	/	7.5		
Motor size	IEC	71A	71B	80A	71B	80A	80B	80A	80B	90S	80B	90S	90L	905	90L	100	90L	100	112	112	132SA	/	112	132SA	/	132SA	132SB	/	132SB		
Phase	n°												3pha	ase (a	all mo	odels) - 1p	ohase	e (<3	kW)											
Std. voltage	V		460 ± 10% 60 Hz - 230 ± 10% 60 Hz																												
Motor protection	ΙP		55																												

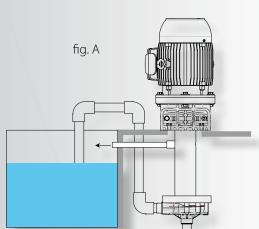
KME - Constructed for fixed installations with the pump body immersed in basins, tanks, collecting wells, reservoirs. Fluids with a specific gravity of 2 kg/dm³ can be handled in function of installed power, with a kinematic viscosity max. of 75 cSt and temperatures as detailed in the table 2


STANDARD PUMP LENGHTS (mm)


table 4


WR	600	800	1000	1250	1500
FC	600	800	1000	1230	1300


PRINCIPAL COMPONENTS

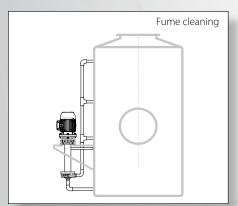

- 1 Electric motor with a standard IEC or NEMA flange.
- 2 Coupling joint of the motor with the pump shaft.
- **3** Base bracket in reinforced technopolymer, it "opens" into 2 pieces for easy access to the assembly/disassembly operations of the motor. It supports the pump and acts as a base for application in small spaces.
- 4 Vapour seal operating dry, both in static and dynamic conditions and active up to a backpressure of 60mbar.
- **5** Base plate in thermoplastic polymer.
- **6** Pump shaft in steel covered with a rigid thermoplastic sheath.
- **7** Sliding bearings with the following combinations of materials:
 - PTFE/glass on Ceramic Allumina for general use, also with crystalline and flake formations;
 - Silicon carbide on silicon carbide in the presence of significant percentages of solids and need of greater chemical resistance (compounds of fluorine, strong alkalis, etc.).
- **8** Pump casing and impeller. In direct contact with the fluid, they are made of materials with excellent chemical resistance. Versions WR and FC have the pump casing and impeller made of polymers respectively reinforced with glass fibers and carbon.
- **9** Suction filter is available on request and fixed to the inlet port with free passage of 3 mm.
- **10** Outlet pipe is connected to the volute casing up to the support plate and is provided with a blocking element.
- 11 Connections
 - WR version (polypropylene): BSP threaded and, upon request, NPT or ISO/ANSI flanged;
 - FC version (PVDF): ISO or ANSI flanged.

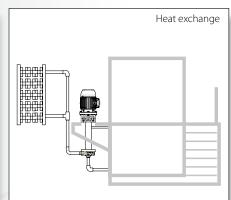
HME - Constructed for fixed installations, with the pump body submerged in basin, tanks, collecting wells, and for those with supports external to the container of the liquid. In this case, a secondary discharge pipe is required, between the pump and the container of liquid, set on the pump column. (Fig. A)

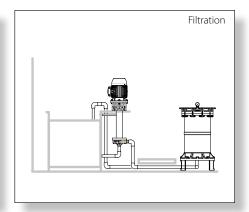
STANDARD PUMP LENGHTS (mm)

table 5

WR	275	450
FC	2/3	450


PRINCIPAL COMPONENTS


- 1 Electric motor with a standard IEC or NEMA flange.
- 2 Coupling joint of the motor with the pump shaft.
- **3** Base bracket in reinforced engineering polymer, it "opens" into 2 pieces for easy access to the assembly/disassembly of the motor to the pump. It supports the pump and serves as a base for application in small spaces.
- **4** Vapour sealing operating dry both in static and dynamic conditions and active up to a backpressure of 60mbar.
- **5** Pump shaft in steel covered with a rigid thermoplastic she-
- 6 Pump casing and impeller. With direct fluid contact, it contains materials with excellent chemical resistance. Versions WR and FC have the pump casing and impeller made of polymers respectively reinforced with glass fibers and carbon.
- **7** Connection (without outlet tube): BSP threaded and, upon request, NPT or ISO/ANSI flanged; Connection (with the outlet tube): WR execution (polypropylene): BSP threaded and, upon re-


quest, NPT or ISO/ANSI flanged; FC execution (PVDF): ISO or ANSI flanged.

Optionals:

- Suction filter fixed to the inlet port with free passage of 3 mm.
- Base plate in thermoplastic polymer
- Outlet pipe is connected to the volute casing up to the support plate and is provided with a blocking element.

INNOVATION

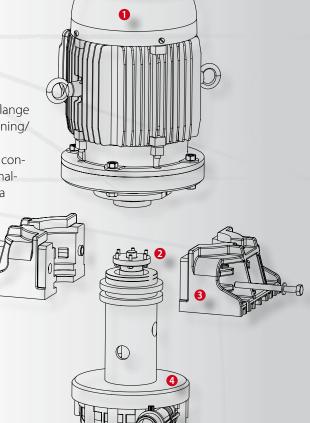
CLOSE-COUPLE PUMP WITH ELECTRIC MOTOR APPLICABLE WITHOUT **DISASSEMBLING THE PUMP COMPONENTS**

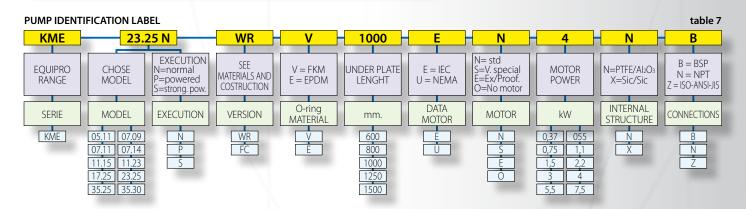
1 Standardised electric motors (IEC, NEMA): No motors with special shafts and flanges Possibility of different voltages and protections Applicability of explosion-proof classes (E-exd).

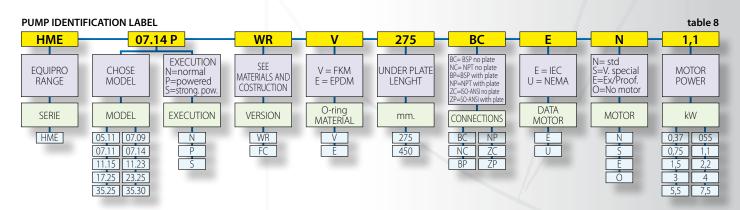
2 Argal-designed rigid coupling orthogonality ensured between the coupling flange and the pump shaft axis automatic centering of the 2 half-couplings easy opening/ closing of the parts.

3 Base bracket conceived by Argal designed for simultaneously fixing the flange connected to the motor with the immersed pump body composed of 2 separable halves to allow the easy installation of the motor through the coupling serves as a base for applications in narrow spaces.

4 Injection-moulded pump body available in 2 materials.

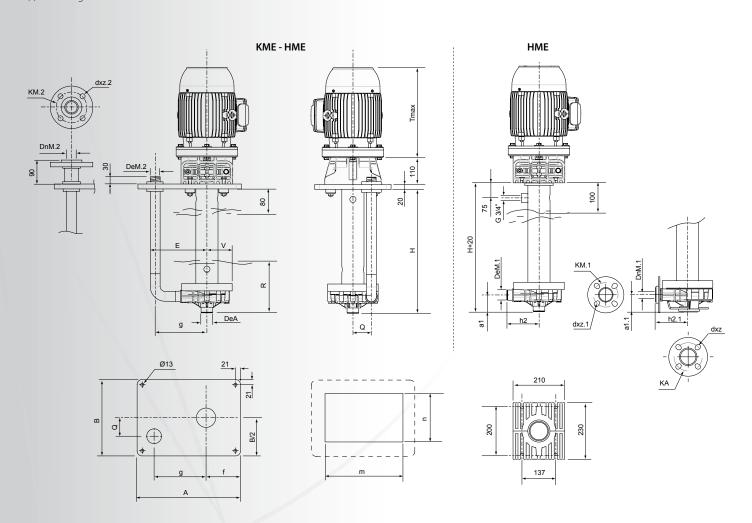

WR - basis resin is PP (Polypropylene) with a wide spectrum of chemical resistance. Its reinforcement with glass fibres offers good mechanical strength and dimensional stability.

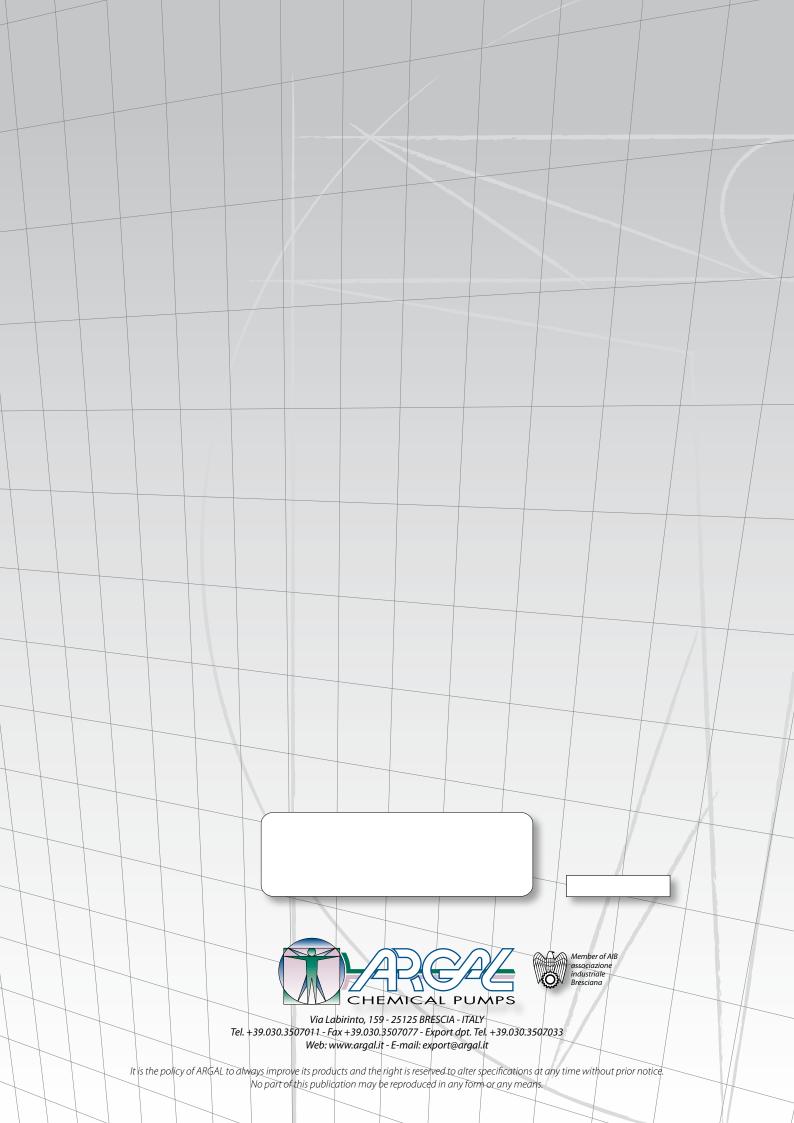

FC - basis resin is PVDF (Polyvinylidenefluoride), fluorinated polymer with good abrasion resistance and high mechanical strength.


The carbon fibres loading increases its dimensional values and stability without reducing chemical resistance.

CONNECTIONS table 6

		05.11	07.09	07.11	07.14	11.15	11.23	17.25	23.25	35.25	35.30
	Flange										
DnA	ISO	25	32	32	40	40	40	40	40	50	50
DHA	ANSI	1"	1"1/4	1″1⁄4	1″1⁄2	1"1/2	1"1/2	1″1⁄2	1"1/2	2"	2"
DnM.1	ISO	25	32	32	32	32	32	32	32	40	40
DHIVI. I	ANSI	1"	1″1⁄4	1"1/4	1"1/4	1″1⁄4	1″1⁄4	1"1/4	1"1/4	1"1/2	1″1⁄2
DnM.2	ISO	20	20	25	25	25	32	32	32	40	40
DNIVI.2	ANSI	3/4 "	3/4 "	1"	1"	1"	1"1/4	1"1/4	1"1/4	1″1⁄2	1″1⁄2
	Thread										
DeA	BSP / NPT	1"	1"1/4	1" 1/4	1″1⁄2	1"1/2	1"1/2	1″1⁄2	1"1/2	2"	2"
DeM.1	BSP / NPT	1"	1"1/4	1" 1/4	1"1/4	1"1/4	1"1/4	1"1/4	1"1/4	1"1/2	1"1/2
DeM.2	BSP / NPT	3/4 "	3/4 "	1"	1"	1″	1″1⁄4	1″1⁄4	1"1/4	1″1⁄2	1″1⁄2





DIMENS	KA dyz KM1 dyz1 KM2 dyz2																					1	able 9																					
mode	el	IEC	KA ISO - ANSI	dxz ISO - ANSI	KM.1 ISO - ANSI	dxz.1 ISO - ANSI	KM.2 ISO - ANSI	dxz.2 ISO - ANSI	a1	a1.1	h2	h2.1	Q	V	E	R min	Н	А	В	f	g	m	n	T max (*)																				
05.11	N P S	71A 71B 80A	85 - 79	14x4 - 16x4	85 - 79	14x4 - 16x4	75						50		190						170			235																				
07.09	N P S N	71B 80A 80B 80A	100				70		62	70	100	108	53	73	215									235																				
07.11	P S N	80B 90S 80B	89					14x4 - 16x4)							300 255																				
11.15	P S N P	90S 90L 90S 90L		18x4	100	18x4	85 - 79	10/11								130	HME 275 - 450) - 800 -1000 - 1250 - 1500	400	310	140	190	340	250	300 330 300 330																				
11.23	S N P	100 90L 100	110	16x4	16x4	16x4	16x4	16x4	16x4	16x4	16x4	16x4	16x4			16x4	16x4	16x4	16x4	16x4	16x4	16x4	16x4	16x4	x4 89	16x4			67	67	130	130	75	103	222	2	H KME 600 -				,,,,			350 330 350
17.25	N P S	112 132SA /	- 98									100	18x4					/5			22									360 410 /														
23.25	P S N	112 132SA / 132SA									89	16x4									1500							360 410 /																
35.25 35.30	P S N P	132SB / 132SB /	125 - 121	18x4 - 19x4	110 - 98	18x4 - 16x4	110 - 98	18x4 - 16x4	70	70	160	160	96	135	252	250	HME 450 KME 600-800-1000-1250-1500	450	340	165	220	390	280	410 / 410 /																				

S / (*) can change for motors of different brands

